সৰল সমীকৰণ । Class 7 Maths । Sankardev Sishu Niketan Solution ।Chapter – 4 Solution। সৰল সমীকৰণ । অনুশীলনী – 4(B)

Class 7 Maths Sankardev Sishu Niketan Chapter – 4 Solution সৰল সমীকৰণ অনুশীলনী – 4(B)

অনুশীলনী – 4(B)

1) পৰ্যবেক্ষণৰ সহায়ত চলকৰ কি মানে তলৰ সমীকৰণ একোটা সিদ্ধ কৰে ঠাৱৰ কৰা_
(i) x-3=0

Answer:- x = 3

(ii) y + 5 = 0

Answer:- y= -5

(iii) x-3=8

Answer:- x = 11

(iv) u + 5 = 10

Answer:- u = 5

(v) x-4=-8

Answer:- x = -4

(vi) y + 3 = 3

Answer:- y = 0


(vii) 5x = 40

Answer:- x = 8

(viii) \(\frac{x}{9}\)= 3

Answer:- x = 27

(ix) 4x+1=9

Answer:- x =2


(x)\(\frac{x}{3}\)-1= 10

Answer:- x = 33

2. তলৰ সমীকৰণবোৰৰ সমাধান কৰা আৰু প্ৰতিটোতে ফলাফল পৰীক্ষা কৰা (অর্থাৎ সত্যাপন কৰা)

(i) \(\ 6x – 5 = 13 \)

সমাধানঃ (i) \(\ 6x – 5 = 13 \)

\(\Rightarrow 6x = 13 + 5 \)

\(\Rightarrow 6x = 18 \)

\(\Rightarrow x = \frac{18}{6} \)

\(\Rightarrow x = 3 \)

\(\therefore \) সমীকৰণৰ মূল = \( 3 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 6x – 5 \)

\(\Rightarrow 6 \times 3 – 5 = 18 – 5 = 13 \)

সোঁফলঃ\(13\)

\(\therefore\) বাওঁফল = সোঁফল ✅

(ii)\(\ 5x – 6 = 2x + 9 \)

সমাধানঃ (ii) \(\ 5x – 6 = 2x + 9 \)

\(\Rightarrow 5x – 2x = 9 + 6 \)

\(\Rightarrow 3x = 15 \)

\(\Rightarrow x = \frac{15}{3} \)

\(\Rightarrow x = 5 \)

\(\therefore \) সমীকৰণৰ মূল = \( 5 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 5x – 6 \)

\(\Rightarrow 5 \times 5 – 6 = 25 – 6 = 19 \)

সোঁফলঃ \(\ 2x + 9 \)

\(\Rightarrow 2 \times 5 + 9 = 10 + 9 = 19 \)

\(\therefore\) বাওঁফল = সোঁফল ✅

(iii)\(\ \frac{1}{2}x + 3 = \frac{3x}{4} \)

সমাধানঃ (iii) \(\ \frac{1}{2}x + 3 = \frac{3x}{4} \)

\(\Rightarrow \frac{1}{2}x – \frac{3x}{4} = -3 \)

\(\Rightarrow \left( \frac{2x – 3x}{4} \right) = -3 \)

\(\Rightarrow \frac{-x}{4} = -3 \)

\(\Rightarrow x = (-3) \times (-4) \)

\(\Rightarrow x = 12 \)

\(\therefore\) সমীকৰণৰ মূল = \( 12 \)

সত্যাপনঃ

বাওঁফলঃ \(\ \frac{1}{2}x + 3 \)

\(\Rightarrow \frac{1}{2} \times 12 + 3 = 6 + 3 = 9 \)

সোঁফলঃ \(\ \frac{3x}{4} \)

\(\Rightarrow \frac{3 \times 12}{4} = \frac{36}{4} = 9 \)

\(\therefore\) বাওঁফল = সোঁফল

(iv)\(\ 2(x + 5) – 3(x – 6) = 40 \)

সমাধানঃ (iv) \(\ 2(x + 5) – 3(x – 6) = 40 \)

\(\Rightarrow 2x + 10 – 3x + 18 = 40 \)

\(\Rightarrow (2x – 3x) + (10 + 18) = 40 \)

\(\Rightarrow -x + 28 = 40 \)

\(\Rightarrow -x = 40 – 28 \)

\(\Rightarrow -x = 12 \)

\(\Rightarrow x = -12 \)

\(\therefore\) সমীকৰণৰ মূল = \( -12 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 2(x + 5) – 3(x – 6) \)

\(\Rightarrow 2(-12 + 5) – 3(-12 – 6) \)

\(\Rightarrow 2(-7) – 3(-18) = -14 + 54 = 40 \)

সোঁফলঃ\(40\)

\(\therefore\) বাওঁফল = সোঁফল

(v)\(\ 2(x + 7) – 5 = 3(x – 2) \)

সমাধানঃ (v) \(\ 2(x + 7) – 5 = 3(x – 2) \)

\(\Rightarrow 2x + 14 – 5 = 3x – 6 \)

\(\Rightarrow 2x + 9 = 3x – 6 \)

\(\Rightarrow 9 + 6 = 3x – 2x \)

\(\Rightarrow 15 = x \)

\(\therefore\) সমীকৰণৰ মূল = \( 15 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 2(x + 7) – 5 \)

\(\Rightarrow 2(15 + 7) – 5 = 2 \times 22 – 5 = 44 – 5 = 39 \)

সোঁফলঃ \(\ 3(x – 2) \)

\(\Rightarrow 3(15 – 2) = 3 \times 13 = 39 \)

\(\therefore\) বাওঁফল = সোঁফল

(vi)\(\ x – 22 = \frac{x}{12} \)

সমাধানঃ (vi) \(\ x – 22 = \frac{x}{12} \)

\(\Rightarrow x – \frac{x}{12} = 22 \)

\(\Rightarrow \frac{12x – x}{12} = 22 \)

\(\Rightarrow \frac{11x}{12} = 22 \)

\(\Rightarrow 11x = 22 \times 12 = 264 \)

\(\Rightarrow x = \frac{264}{11} = 24 \)

\(\therefore\) সমীকৰণৰ মূল = \( 24 \)

সত্যাপনঃ

বাওঁফলঃ\(\ x – 22 = 24 – 22 = 2 \)

সোঁফলঃ \(\ \frac{x}{12} = \frac{24}{12} = 2 \)

\(\therefore\) বাওঁফল = সোঁফল

(vii) \(\ 3x – 2(2x – 5) = 2(x + 3) – 8 \)

সমাধানঃ (vii) \(\ 3x – 2(2x – 5) = 2(x + 3) – 8 \)

\(\Rightarrow 3x – (4x – 10) = 2x + 6 – 8 \)

\(\Rightarrow 3x – 4x + 10 = 2x – 2 \)

\(\Rightarrow -x + 10 = 2x – 2 \)

\(\Rightarrow 10 + 2 = 2x + x = 3x \)

\(\Rightarrow 12 = 3x \Rightarrow x = \frac{12}{3} = 4 \)

\(\therefore\) সমীকৰণৰ মূল = \( 4 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 3x – 2(2x – 5) = 12 – 2(8 – 5) = 12 – 6 = 6 \)

সোঁফলঃ\(\ 2(x + 3) – 8 = 2(7) – 8 = 14 – 8 = 6 \)

\(\therefore\) বাওঁফল = সোঁফল

(viii)\(\ 18x – 62 = -13x \)

সমাধানঃ (viii) \(\ 18x + 13x = 62 \)

\(\Rightarrow 31x = 62 \Rightarrow x = \frac{62}{31} = 2 \)

\(\therefore\) সমীকৰণৰ মূল = \( 2 \)

সত্যাপনঃ

বাওঁফলঃ \(\ 18x – 62 = 36 – 62 = -26 \)

সোঁফলঃ \(\ -13x = -13 \times 2 = -26 \)

\(\therefore\) বাওঁফল = সোঁফল

(ix)\(\ y^3 = 8 – \frac{y – 2}{5} \)

সমাধানঃ (ix) \(\ y^3 = 8 – \frac{y – 2}{5} \)

Let’s try \(y = 2\):

LHS: \(2^3 = 8\)

RHS: \(8 – \frac{2 – 2}{5} = 8 – 0 = 8\)

\(\therefore\) সমীকৰণৰ মূল = \( 2 \)

সত্যাপনঃ

বাওঁফল = সোঁফল

(x)\(\ \frac{5}{2} = \frac{p}{2} + \frac{1}{2} \)

সমাধানঃ (x) \(\ \frac{5}{2} = \frac{p + 1}{2} \)

\(\Rightarrow 5 = p + 1 \Rightarrow p = 4 \)

\(\therefore\) সমীকৰণৰ মূল = \( 4 \)

সত্যাপনঃ

\(\ \frac{p}{2} + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \)

\(\therefore\) বাওঁফল = সোঁফল

(xi)\(\ 7(x – 2) – 8(4 – 3x) = 47 \)

সমাধানঃ (xi) \(\ 7x – 14 – 32 + 24x = 47 \)

\(\Rightarrow (7x + 24x) – (14 + 32) = 47 \)

\(\Rightarrow 31x – 46 = 47 \Rightarrow 31x = 93 \)

\(\Rightarrow x = \frac{93}{31} = 3 \)

\(\therefore\) সমীকৰণৰ মূল = \( 3 \)

সত্যাপনঃ

LHS = \(7(3 – 2) – 8(4 – 9) = 7(1) – 8(-5) = 7 + 40 = 47\)

RHS = \(47\)

\(\therefore\) বাওঁফল = সোঁফল

(xii)\(\ \frac{2u}{5} + \frac{4}{3} = \frac{11}{5} \)

সমাধানঃ (xii) \(\ \frac{2u}{5} = \frac{11}{5} – \frac{4}{3} \)

\(\Rightarrow \frac{2u}{5} = \frac{33 – 20}{15} = \frac{13}{15} \)

\(\Rightarrow 2u = \frac{13 \times 5}{15} = \frac{65}{15} \)

\(\Rightarrow u = \frac{65}{30} = \frac{13}{6} \)

\(\therefore\) সমীকৰণৰ মূল = \( \frac{13}{6} \)

সত্যাপনঃ

LHS = \(\ \frac{2 \times \frac{13}{6}}{5} + \frac{4}{3} = \frac{26}{30} + \frac{4}{3} \)

\(\Rightarrow \frac{13}{15} + \frac{20}{15} = \frac{33}{15} = \frac{11}{5} \)

\(\therefore\) বাওঁফল = সোঁফল

(xiii)\(\ \frac{x + 5}{(2x + 2) + 7} = \frac{1}{4} \)

সমাধানঃ (xiii) \(\ \frac{x + 5}{2x + 9} = \frac{1}{4} \)

Cross-multiplying:

\(\Rightarrow 4(x + 5) = 2x + 9 \)

\(\Rightarrow 4x + 20 = 2x + 9 \Rightarrow 2x = -11 \)

\(\Rightarrow x = \frac{-11}{2} \)

\(\therefore\) সমীকৰণৰ মূল = \( \frac{-11}{2} \)

সত্যাপনঃ

LHS = \(\ \frac{-11/2 + 5}{2(-11/2) + 9} = \frac{-1/2}{-11 + 9} = \frac{-1/2}{-2} = \frac{1}{4} \)

RHS = \( \frac{1}{4} \)

\(\therefore\) বাওঁফল = সোঁফল

(3)  কি অৱস্থাত \(\ ax = b \) সমীকৰণৰ মূল \(\ \frac{b}{a} \) হব?

সমাধানঃ\( a \ne 0 \) হ’লে।

(4)এনেধৰণৰ তিনিটা সমীকৰণ লিখা যিবিলাকৰ প্ৰতিটোৰে মূল বা বীজ 2 (অর্থাৎ \( x = 2 \))।

সমাধানঃ-

\(\implies x – 2 = 0 \)

\(\implies 3x = 6 \)

\(\implies 2(x + 1) = 6 \)

Leave a Reply